Villigen/Würenlingen

Intelligente Mikroroboter: Diese Maschine soll im menschlichen Körper operieren

Laura Heyderman und Tian-Yun Huang betrachten ein Modell des Origami-Vogels, während Jizhai Cui den Roboter unter dem Mikroskop beobachtet.

Forschende des PSI und der ETH haben eine Mikromaschine konstruiert, die vielfältig eingesetzt werden kann, etwa in der Biomedizin oder der Mikroelektronik. DIe Ergebniss werden im renomierten Magazin «Nature» publiziert.

Er sieht aus wie ein Kunstwerk aus Origami: Der nur wenige Mikrometer grosse Roboter erinnert an einen mit der japanischen Faltkunst hergestellten Papiervogel. Doch anders als ein Papiergebilde bewegt sich der Roboter wie von Geisterhand, ohne dass eine sichtbare Kraft auf ihn einwirkt. Er schlägt mit den Flügeln oder krümmt seinen Hals und zieht seinen Kopf ein. Möglich sind diese Aktionen durch Magnetismus.

Forschende des Paul-Scherrer-Instituts (PSI) und der ETH Zürich haben die Mikromaschine unter anderem aus Materialien zusammengesetzt, die kleine Nanomagnete enthalten. Diese Nanomagnete können so programmiert werden, dass sie eine bestimmte magnetische Ausrichtung annehmen.

Wenn die programmierten Nanomagnete dann einem Magnetfeld ausgesetzt werden, wirken spezifische Kräfte auf sie. Befinden sich diese Magnete in flexiblen Bauteilen, dann führen die auf sie wirkenden Kräfte zu einer Bewegung.

Nanomagnete lassen sich programmieren

Die Nanomagnete lassen sich immer wieder neu programmieren. Das führt zu jeweils unterschiedlichen Kräften, die auf die Konstruktion wirken, und neuen Bewegungen.

Für den Bau des Mikroroboters platzierten die Forschenden Reihen von Kobaltmagneten auf dünnen Schichten von Siliziumnitrid. Der «Vogel» aus diesem Material konnte verschiedene Bewegungen ausführen, beispielsweise flattern, rütteln, sich umdrehen oder zur Seite gleiten.

Der Mikrovogel kann flattern und rütteln

Dieses neuartige Konzept ist ein wichtiger Schritt auf dem Weg zu Mikro- und Nanorobotern, die nicht nur Informationen für eine einzelne bestimmte Aktion speichern, sondern immer wieder neu programmiert werden können, um verschiedene Aufgaben zu erfüllen.

«Es ist vorstellbar, dass in der Zukunft eine autonome Mikromaschine durch menschliche Blutgefässe navigiert und biomedizinische Aufgaben wie das Abtöten von Krebszellen übernimmt», erklärt Bradley Nelson, Leiter des Departments Maschinenbau und Verfahrenstechnik der ETH Zürich.

Publikation im renommierten «Nature»

«Andere Einsatzgebiete sind denkbar, zum Beispiel flexible Mikroelektronik oder Mikrolinsen, die ihre optischen Eigenschaften verändern», sagt Tian-Yun Huang, Forscher am Institut für Robotik und Intelligente Systeme der ETH Zürich. Darüber hinaus sind Anwendungen möglich, bei denen sich die Eigenarten von Oberflächen verändern.

«Beispielsweise könnten damit Oberflächen geschaffen werden, die je nach Bedarf entweder von Wasser benetzt werden oder Wasser abweisen», sagt Jizhai Cui, Ingenieur und Forscher im Labor für Mesoskopische Systeme von Laura Heyderman. Ihre Ergebnisse veröffentlichen die Forschenden nun im Wissenschaftsmagazin Nature. (bt)

Verwandte Themen:

Meistgesehen

Artboard 1